

Схема теплоснабжения муниципального образования городской округ «Город Архангельск» до 2040 года

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ

Глава 11. Оценка надежности теплоснабжения

СОГЛАСОВАНО:		СОГЛАСО	BAHO			
Генеральный директор		Директор хозяйства	депар	этамента	гор	одского
ООО «Невская Энергетика»		Администр «Город Арх		городско ьск»	ого	округа
Е. А. Кикоть	.			_ A.B. Гаг	нуще	нко
« » 20	023 г.	«»			20	23 г.

Схема теплоснабжения муниципального образования городской округ «Город Архангельск» до 2040 года

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ

Глава 11. Оценка надежности теплоснабжения

Санкт-Петербург 2023

СПИСОК ИСПОЛНИТЕЛЕЙ

Газизов Ф.Н. Технический директор ООО «Невская Энергетика».

Технический контроль, контроль исполнения договорных

обязательств.

Прохоров И.А. Ведущий специалист ООО «Невская Энергетика».

Сбор и обработка данных, разработка схемы теплоснабжения.

Бочков А.И. Специалист ООО «Невская Энергетика».

Сбор и обработка данных, разработка схемы теплоснабжения.

Короленко М.В. Специалист ООО «Невская Энергетика».

Сбор и обработка данных, разработка схемы теплоснабжения.

Антипова А.Д. Специалист ООО «Невская Энергетика».

Разработка электронной модели схемы теплоснабжения.

СОСТАВ ДОКУМЕНТА

Обосновывающие материалы к схеме теплоснабжения, являющиеся ее неотъемлемой частью, включают следующие главы:

- Глава 1 «Существующее положение в сфере производства, передачи и потребления тепловой энергии для целей теплоснабжения»
- Глава 2 «Существующее и перспективное потребление тепловой энергии на цели теплоснабжения»
- Глава 3 «Электронная модель системы теплоснабжения поселения, городского округа, города федерального значения»
- Глава 4 «Существующее и перспективные балансы тепловой мощности источников тепловой энергии и тепловой нагрузки потребителей»
- Глава 5 «Мастер-план развития систем теплоснабжения поселения, городского округа, города федерального значения»
- Глава 6 «Существующие и перспективные балансы производительности водоподготовительных установок и максимального потребления теплоносителя теплопотребляющими установками потребителей, в том числе в аварийных режимах»
- Глава 7 «Предложения по строительству, реконструкции, техническому перевооружению и (или) модернизации источников тепловой энергии»
- Глава 8 «Предложения по строительству, реконструкции и (или) модернизации тепловых сетей»
- Глава 9 «Предложения по переводу открытых систем теплоснабжения (горячего водоснабжения) в закрытые системы горячего водоснабжения»
- Глава 10 «Перспективные топливные балансы»
- Глава 11 «Оценка надежности теплоснабжения»
- Глава 12 «Обоснование инвестиций в строительство, реконструкцию, техническое перевооружение и (или) модернизацию»
- Глава 13 «Индикаторы развития систем теплоснабжения поселения, городского округа, города федерального значения»
- Глава 14 «Ценовые (тарифные) последствия»
- Глава 15 «Реестр единых теплоснабжающих организаций»
- Глава 16 «Реестр мероприятий схемы теплоснабжения»
- Глава 17 «Замечания и предложения к проекту схемы теплоснабжения»
- Глава 18 «Сводный том изменений, выполненных в доработанной и (или) актуализированной схеме теплоснабжения»

ОГЛАВЛЕНИЕ

COCTAB	З ДОКУМЕНТА	4
ОПРЕДЕЈ	ПЕНИЯ	6
ПЕРЕЧЕН	НЬ ПРИНЯТЫХ ОБОЗНАЧЕНИЙ	8
Глава 11	ОЦЕНКА НАДЕЖНОСТИ ТЕПЛОСНАБЖЕНИЯ	9
11.1	Общие положения	9
11.2	Методика расчета вероятности безотказной работы тепловых сетей	l 1
11.3	Расчет вероятности безотказной работы тепловых сетей Архангельской ТЭЦ н	ıa
каждый	и период действия схемы теплоснабжения	23
11.4	Применение на источниках тепловой энергии рациональных тепловых схем	c
дублир	ованными связями и новых технологий, обеспечивающих нормативную готовност	ГЬ
энергет	ического оборудования	11

определения

В настоящей главе применяются следующие термины с соответствующими определениями:

Термины	Определения								
Теплоснабжение	Обеспечение потребителей тепловой энергии тепловой энергией,								
	теплоносителем, в том числе поддержание мощности								
Система теплоснабжения	Совокупность источников тепловой энергии и теплопотребляющих установок,								
	технологически соединенных тепловыми сетями								
Источник тепловой энергии	Устройство, предназначенное для производства тепловой энергии								
Тепловая сеть	Совокупность устройств (включая центральные тепловые пункты, насосные								
	станции), предназначенных для передачи тепловой энергии, теплоносителя от								
	источников тепловой энергии до теплопотребляющих установок								
Тепловая мощность (далее	Количество тепловой энергии, которое может быть произведено и (или) передано								
- мощность)	по тепловым сетям за единицу времени								
Тепловая нагрузка	Количество тепловой энергии, которое может быть принято потребителем								
	тепловой энергии за единицу времени								
Потребитель тепловой	Лицо, приобретающее тепловую энергию (мощность), теплоноситель для								
энергии (далее потребитель)	использования на принадлежащих ему на праве собственности или ином								
no specifically	законном основании теплопотребляющих установках либо для оказания								
	коммунальных услуг в части горячего водоснабжения и отопления								
Теплопотребляющая	Устройство, предназначенное для использования тепловой энергии,								
установка	теплоносителя для нужд потребителя тепловой энергии								
Теплоснабжающая	Организация, осуществляющая продажу потребителям и (или)								
организация	теплоснабжающим организациям произведенных или приобретенных тепловой								
	энергии (мощности), теплоносителя и владеющая на праве собственности или								
	ином законном основании источниками тепловой энергии и (или) тепловыми								
	сетями в системе теплоснабжения, посредством которой осуществляется								
	теплоснабжение потребителей тепловой энергии (данное положение применяется								
	к регулированию сходных отношений с участием индивидуальных								
	предпринимателей)								
Теплосетевая организация	Организация, оказывающая услуги по передаче тепловой энергии (данное								
	положение применяется к регулированию сходных отношений с участием								
	индивидуальных предпринимателей)								
Зона действия системы	Территория городского округа или ее часть, границы которой устанавливаются								
теплоснабжения	по наиболее удаленным точкам подключения потребителей к тепловым сетям,								
	входящим в систему теплоснабжения								
Зона действия источника	Территория городского округа или ее часть, границы которой устанавливаются								
тепловой энергии	закрытыми секционирующими задвижками тепловой сети системы								
	теплоснабжения								
Установленная мощность	Сумма номинальных тепловых мощностей всего принятого по акту ввода в								
источника тепловой энергии	эксплуатацию оборудования, предназначенного для отпуска тепловой энергии								
onopi nn	I								

Термины	Определения							
	потребителям на собственные и хозяйственные нужды							
Располагаемая мощность источника тепловой энергии	Величина, равная установленной мощности источника тепловой энергии за вычетом объемов мощности, не реализуемой по техническим причинам, в том числе по причине снижения тепловой мощности оборудования в результате эксплуатации на продленном техническом ресурсе (снижение параметров пара перед турбиной, отсутствие рециркуляции в пиковых водогрейных котлоагрегатах и др.)							
Мощность источника тепловой энергии нетто	Величина, равная располагаемой мощности источника тепловой энергии за вычетом тепловой нагрузки на собственные и хозяйственные нужды							
Комбинированная выработка электрической и тепловой энергии	Режим работы теплоэлектростанций, при котором производство электрической энергии непосредственно связано с одновременным производством тепловой энергии							
Теплосетевые объекты	Объекты, входящие в состав тепловой сети и обеспечивающие передачу тепловой энергии от источника тепловой энергии до теплопотребляющих установок потребителей тепловой энергии							
Расчетный элемент территориального деления	Территория городского округа или ее часть, принятая для целей разработки схемы теплоснабжения в неизменяемых границах на весь срок действия схемы теплоснабжения							

перечень принятых обозначений

№ п/п	Сокращение	Пояснение
1	БМК	Блочно-модульная котельная
2	ВПУ	Водоподготовительная установка
3	ГВС	Горячее водоснабжение
4	ETO	Единая теплоснабжающая организация
5	3ATO	Закрытое территориальное образование
6	ИП	Инвестиционная программа
7	ИТП	Индивидуальный тепловой пункт
8	MK, KM	Муниципальная котельная
9	ΜУΠ	Муниципальное унитарное предприятие
10	HBB	Необходимая валовая выручка
11	НДС	Налог на добавленную стоимость
12	НН3Т	Неснижаемый нормативный запас топлива
13	НС	Насосная станция
14	НТД	Нормативная техническая документация
15	НЭ3Т	Нормативный эксплуатационный запас основного или резервного видов топлива
16	OB	Отопление и вентиляция
17	ОН3Т	Общий нормативный запас топлива
18	ПИР	Проектные и изыскательские работы
19	ПНС	Повысительно-насосная станция
20	ПП РФ	Постановление Правительства Российской Федерации
21	ППУ	Пенополиуретан
22	CMP	Строительно-монтажные работы
23	СЦТ	Система централизованного теплоснабжения
24	ТЭ	Тепловая энергия
25	XBO	Химводоочистка
26	ХВП	Химводоподготовка
27	ЦТП	Центральный тепловой пункт
28	ЭМ	Электронная модель системы теплоснабжения

ГЛАВА 11 ОЦЕНКА НАДЕЖНОСТИ ТЕПЛОСНАБЖЕНИЯ

Надежность систем централизованного теплоснабжения определяется структурой, параметрами, степенью резервирования и качеством элементов всех ее подсистем — источников тепловой энергии, тепловых сетей, узлов потребления, систем автоматического регулирования, а также уровнем эксплуатации и строительно-монтажных работ.

В силу ряда как удаленных по времени, так и действующих сейчас причин положение централизованном теплоснабжении характеризуется неудовлетворительным техническим уровнем низкой экономической И эффективностью изношенностью оборудования, систем, недостаточными надежностью теплоснабжения и уровнем комфорта в зданиях, большими потерями тепловой энергии.

Наиболее ненадежным звеном систем теплоснабжения являются тепловые сети, особенно при их подземной прокладке. Это, в первую очередь, обусловлено низким качеством применяемых ранее конструкций теплопроводов, тепловой изоляции, запорной арматуры, недостаточным уровнем автоматического регулирования процессов передачи, распределения и потребления тепловой энергии, а также все увеличивающимся моральным и физическим старением теплопроводов и оборудования из-за хронического недофинансирования работ по их модернизации и реконструкции. Кроме того, структура тепловых сетей в крупных системах не соответствует их масштабам.

Целью расчета является оценка способности тепловых сетей надежно обеспечивать в течение заданного времени требуемые режимы, параметры и качество теплоснабжения каждого потребителя, а также обоснование необходимости и проверки эффективности реализации мероприятий, повышающих надежность теплоснабжения потребителей тепловой энергии.

11.1 Общие положения

Оценка надежности теплоснабжения разрабатываются в соответствии с подпунктом «и» пункта 19 и пункта 46 Требований к схемам теплоснабжения. Нормативные требования к надёжности теплоснабжения установлены в СП124.13330.2012 (актуализированная версия СНиП 41-02-2003 «Тепловые сети») в части пунктов 6.25-6.30 раздела «Надежность».

В СП 124.13330.2012 надежность теплоснабжения определяется по способности проектируемых и действующих источников теплоты, тепловых сетей и в целом систем централизованного теплоснабжения обеспечивать в течение заданного времени требуемые режимы, параметры и качество теплоснабжения (отопления, вентиляции, горячего водоснабжения, а также технологических потребностей предприятий в паре и горячей воде) обеспечивать нормативные показатели вероятности безотказной работы [Р] (далее по тексту – ВБР), коэффициент готовности [К_г], живучести [Ж].

Расчет показателей системы с учетом надежности должен производиться для каждого потребителя. При этом минимально допустимые показатели вероятности безотказной работы следует принимать для:

- источника теплоты Рит = 0,97;
- тепловых сетей Ptc = 0.9;
- потребителя теплоты Pпт = 0,99;
- системы централизованного теплоснабжения (далее по тексту СЦТ) в целом Pсцт = $0.9 \cdot 0.97 \cdot 0.99 = 0.864$.

Нормативные показатели безотказной работы тепловых сетей обеспечиваются следующими мероприятиями:

- установлением предельно допустимой длины нерезервированных участков теплопроводов (тупиковых, радиальных, транзитных) до каждого потребителя или теплового пункта;
- местом размещения резервных трубопроводных связей между радиальными теплопроводами;
- достаточностью диаметров, выбираемых при проектировании новых или реконструируемых существующих теплопроводов для обеспечения резервной подачи теплоты потребителям при отказах;
- необходимость замены на конкретных участках конструкций тепловых сетей и теплопроводов на более надежные, а также обоснованность перехода на надземную или тоннельную прокладку;
- очередность ремонтов и замен теплопроводов, частично или полностью утративших свой ресурс.

Готовность системы теплоснабжения к исправной работе в течение отопительного периода определяется по числу часов ожидания готовности: источника

теплоты, тепловых сетей, потребителей теплоты, а также - числу часов нерасчетных температур наружного воздуха в данной местности.

Минимально допустимый показатель готовности СЦТ к исправной работе Кг принимается равным 0,97.

Нормативные показатели готовности систем теплоснабжения обеспечиваются следующими мероприятиями:

- готовностью СЦТ к отопительному сезону;
- достаточностью установленной (располагаемой) тепловой мощности источника тепловой энергии для обеспечения исправного функционирования СЦТ при нерасчетных похолоданиях;
- способностью тепловых сетей обеспечить исправное функционирование СЦТ при нерасчетных похолоданиях;
- организационными и техническими мерами, необходимые для обеспечения исправного функционирования СЦТ на уровне заданной готовности;
- максимально допустимым числом часов готовности для источника теплоты.

Потребители теплоты по надежности теплоснабжения делятся на три категории:

Первая категория - потребители, не допускающие перерывов в подаче расчетного количества теплоты и снижения температуры воздуха в помещениях, ниже предусмотренных ГОСТ 30494-2011 «Здания жилые и общественные. Параметры микроклимата в помещениях».

Например, больницы, родильные дома, детские дошкольные учреждения с круглосуточным пребыванием детей, картинные галереи, химические и специальные производства, шахты и т.п.

Вторая категория - потребители, допускающие снижение температуры в отапливаемых помещениях на период ликвидации аварии, но не более 54 ч: жилых и общественных зданий – до 12°C, промышленных зданий – до 8°C.

11.1.1 Методика расчета вероятности безотказной работы тепловых сетей

11.1.2 Термины и определения

Надежность – свойство участка тепловой сети или элемента тепловой сети сохранять во времени в установленных пределах значения всех параметров,

характеризующих способность обеспечивать передачу теплоносителя в заданных режимах и условиях применения и технического обслуживания. Надежность тепловой сети и системы теплоснабжения является комплексным свойством, которое в зависимости от назначения объекта и условий его применения может включать безотказность, долговечность, ремонтопригодность и сохраняемость или определенные сочетания этих свойств.

Безотказность — свойство тепловой сети непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки;

Долговечность — свойство тепловой сети или объекта тепловой сети сохранять работоспособное состояние до наступления предельного состояния при установленной системе технического обслуживания и ремонта;

Ремонтопригодность — свойство элемента тепловой сети, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путем технического обслуживания и ремонта;

Исправное состояние — состояние элемента тепловой сети и тепловой сети в целом, при котором он соответствует всем требованиям нормативно-технической и (или) конструкторской (проектной) документации;

Неисправное состояние — состояние элемента тепловой сети или тепловой сети в целом, при котором он не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской (проектной) документации;

Работоспособное состояние — состояние элемента тепловой сети или тепловой сети в целом, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской (проектной) документации;

Неработоспособное состояние - состояние элемента тепловой сети, при котором значение хотя бы одного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям нормативнотехнической и (или) конструкторской (проектной) документации. Для сложных объектов возможно деление их неработоспособных состояний. При этом из множества неработоспособных состояний выделяют частично неработоспособные состояния, при которых тепловая сеть способна частично выполнять требуемые функции;

Предельное состояние – состояние элемента тепловой сети или тепловой сети в целом, при котором его дальнейшая эксплуатация недопустима или нецелесообразна, либо восстановление его работоспособного состояния невозможно или нецелесообразно;

Критерий предельного состояния - признак или совокупность признако предельного состояния элемента тепловой сети, установленные нормативнотехнической и (или) конструкторской (проектной) документацией. В зависимости от условий эксплуатации для одного и того же элемента тепловой сети могут быть установлены два и более критериев предельного состояния;

Дефект – по ГОСТ 15467;

Повреждение — событие, заключающееся в нарушении исправного состояния объекта при сохранении работоспособного состояния;

Отказ – событие, заключающееся в нарушении работоспособного состояния элемента тепловой сети или тепловой сети в целом;

Критерий отказа — признак или совокупность признаков нарушения работоспособного состояния тепловой сети, установленные в нормативнотехнической и (или) конструкторской (проектной) документации.

Для целей перспективной схемы теплоснабжения термин «отказ» будет использован в следующих интерпретациях:

- отказ участка тепловой сети событие, приводящие к нарушению его работоспособного состояния (т.е. прекращению транспорта теплоносителя по этому участку в связи с нарушением герметичности этого участка);
- отказ системы теплоснабжения событие, приводящее к падению температуры в отапливаемых помещениях жилых и общественных зданий ниже +12 °C, в промышленных зданиях ниже +8 °C (СНиП 41-02-2003. Тепловые сети).

При разработке схемы теплоснабжения для описания надежности термин «повреждение» будет употребляться только в отношении событий, которые не приводят к нарушению работоспособности участка тепловой сети и, следовательно, не требуют выполнения незамедлительных ремонтных работ с целью восстановления его работоспособности. К таким событиям относятся зарегистрированные «свищи» на

прямом или обратном теплопроводах тепловых сетей.

Мы также не будем употреблять термин «авария», так как это характеристика «тяжести» отказа и возможных последствие его устранения. Все упомянутые в этом абзаце термины устанавливают лишь градацию (шкалу) отказов.

11.1.3 Методика расчета надежности теплоснабжения

Под надежностью системы теплоснабжения понимают способность проектируемых и действующих источников тепловой энергии, тепловых сетей и в целом СЦТ обеспечивать в течение заданного времени требуемые режимы, параметры и качество теплоснабжения.

Основным показателем (критерием) является вероятность безотказной работы системы (P) — способность системы не допускать отказов, приводящих к падению температуры в отапливаемых помещениях жилых и общественных зданий ниже +12 °C, в промышленных зданиях ниже+8 °C, более числа раз, установленного нормативами.

Главное свойство отказов заключается в том, что они представляют собой случайные и редкие события. Эти свойства характеризуют не только отказы, связанные с нарушением прочности, но и все отказы.

Одной из важнейших характеристик надежности элементов является параметр потока отказов.

Расчет вероятности безотказной работы тепловой сети по отношению к каждому потребителю осуществляется по следующему алгоритму:

- 1. Определяется путь передачи теплоносителя от источника до потребителя, по отношению к которому выполняется расчет вероятности безотказной работы тепловой сети.
- 2. На первом этапе расчета устанавливается перечень участков теплопроводов, составляющих этот путь.
- 3. Для каждого участка тепловой сети устанавливаются: год его ввода в эксплуатацию, диаметр и протяженность.
- 4. На основе обработки данных по отказам и восстановлениям (времени, затраченном на ремонт участка) всех участков тепловых сетей за несколько лет их работы устанавливаются следующие зависимости:

 λ_0 — средневзвешенная частота (интенсивность) устойчивых отказов участков в конкретной системе теплоснабжения при продолжительности эксплуатации участков от 3 до 17 лет (1/км/год);

- средневзвешенная частота (интенсивность) отказов для участков тепловой сети с продолжительностью эксплуатации от 1 до 3 лет;
- средневзвешенная частота (интенсивность) отказов для участков тепловой сети с продолжительностью эксплуатации от 17 и более лет;
- средневзвешенная продолжительность ремонта (восстановления) участков тепловой сети;
- средневзвешенная продолжительность ремонта (восстановления) участков тепловой сети в зависимости от диаметра участка.

Частота (интенсивность) отказов (в соответствии с ГОСТ 27.002-09 «Надежность в технике») каждого участка тепловой сети измеряется с помощью показателя Аt, который имеет размерность [1/км/год] или [1/км/час]. Интенсивность отказов всей тепловой сети (без резервирования) по отношению к потребителю представляется как последовательное (в смысле надежности) соединение элементов, при котором отказ одного из всей совокупности элементов приводит к отказу все системы в целом. Средняя вероятность безотказной работы системы, состоящей из последовательно соединенных элементов, будет равна произведению вероятностей безотказной работы:

$$P_0 = \prod_{i=1}^{i=N} P_i = e^{-\lambda_1 L_1 i} \cdot e^{-\lambda_2 L_2 i} \cdot \dots \cdot e^{-\lambda_n L_n i} = e^{-t \cdot \sum_{i=1}^{i=N} \lambda_i L_i} = e^{\lambda_c t}$$
(1.1)

Интенсивность отказов всего последовательного соединения равна сумме интенсивностей отказов на каждом участке $\lambda_c = L_1 \lambda_1 + L_2 \lambda_2 + \ldots + L_n \lambda_n$, [1/час], где L_1 — протяженность каждого участка, [км]. И, таким образом, чем выше значение интенсивности отказов системы, тем меньше вероятность безотказной работы. Параметр времени в этих выражениях всегда равен одному отопительному периоду, т.е. значение вероятности безотказной работы вычисляется как некоторая вероятность в конце каждого рабочего цикла (перед следующим ремонтным периодом).

Интенсивность отказов каждого конкретного участка может быть разной, но самое главное, она зависит от времени эксплуатации участка (важно: не в процессе одного отопительного периода, а времени от начала его ввода в эксплуатацию). В

нашей практике для описания параметрической зависимости интенсивности отказов применяется зависимость от срока эксплуатации, следующего вида, близкая по характеру к распределению Вейбулла:

$$\lambda(t) = \lambda_0 (0.1\tau)^{\alpha - 1},\tag{1.2}$$

где τ - срок эксплуатации участка [лет].

Характер изменения интенсивности отказов зависит от параметра а: при а < 1, она монотонно убывает, при а > 1 - возрастает; при а = 1 функция принимает вид $\lambda(t) = \lambda_0 = Const$, где $_0$ – это средневзвешенная частота (интенсивность) устойчивых отказов в конкретной системе теплоснабжения.

Обработка значительного количества данных по отказам, позволяет использовать следующую зависимость для параметра формы интенсивности отказов:

$$\alpha = \begin{cases} 0.8 \text{ при } 0 < \tau \le 3\\ 1 \text{ при } 3 < \tau \le 17\\ 0.5 \cdot e^{(\tau/20)} \text{ при } \tau > 17 \end{cases}$$
 (1.3)

На рисунке 11.1 приведен вид зависимости интенсивности отказов от срока эксплуатации участка тепловой сети. При ее использовании следует помнить о некоторых допущениях, которые были сделаны при отборе данных:

- она применима только тогда, когда в тепловых сетях существует четкое разделение на эксплуатационный и ремонтный периоды;
- в ремонтный период выполняются гидравлические испытания тепловой сети после каждого отказа.

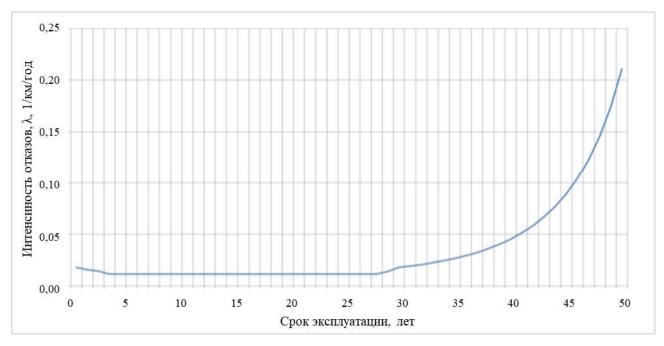


Рисунок 11.1 Интенсивность отказов в зависимости от срока эксплуатации участка тепловой сети

- 5. По данным региональных справочников по климату о среднесуточных температурах наружного воздуха за последние десять лет строят зависимость повторяемости температур наружного воздуха (график продолжительности тепловой нагрузки отопления). При отсутствии этих данных зависимость повторяемости температур наружного воздуха для местоположения тепловых сетей принимают по данным СНиП «Строительная климатология и геофизика» или справочника «Наладка и эксплуатация водяных тепловых сетей».
- 6. С использованием данных о теплоаккумулирующей способности абонентских установок определяют время, за которое температура внутри отапливаемого помещения снизится до температуры, установленной в критериях отказа теплоснабжения. Отказ теплоснабжения потребителя событие, приводящее к падению температуры в отапливаемых помещениях жилых и общественных зданий ниже +12°C, в промышленных зданиях ниже +8°C (СП 124.13330.2012 «Тепловые сети»). Например, для расчета времени снижения температуры в жилом здании используют формулу:

$$t_{\rm B} = t_{\rm H} + \frac{Q_0}{q_0 V} + \frac{t_{\rm B}' - t_{\rm H} - \frac{Q_0}{q_0 V}}{exp(z/\beta)}$$
(1.4)

где

 $t_{\scriptscriptstyle \rm B}$ — внутренняя температура, которая устанавливается в помещении через

время д в часах, после наступления исходного события, С;

z – время, отсчитываемое после начала исходного события, ч;

 $t_{\rm B}'$ – температура в отапливаемом помещении, которая была в момент начала исходного события, °C;

 $t_{\rm H}$ – температура наружного воздуха, усредненная за период времени z, C;

 Q_0 – подача теплоты в помещение, Дж/ч;

 q_0V – удельные расчетные тепловые потери здания, Дж/(ч°С);

 β – коэффициент аккумуляции помещения (здания), ч.

Для расчета времени снижения температуры в жилом задании до +12°C при внезапном прекращении теплоснабжения эта формула имеет следующий вид:

$$z = \beta \cdot \ln \frac{(t_{\rm B} - t_{\rm H})}{(t_{\rm B,0} - t_{\rm H})}$$
 (1.5)

где $t_{\text{в.o}}$ – внутренняя температура, которая устанавливается критерием отказа теплоснабжения (+12 С для жилых зданий).

По данным СНиП «Строительная климатология» была построена зависимость повторяемости температур наружного воздуха (график продолжительности тепловой нагрузки отопления), а также рассчитано время снижения температуры внутри отапливаемых помещений ниже $+12^{\circ}$ С при отключении систем теплоснабжения. Расчет проводился для каждой повторяемости температур наружного воздуха при коэффициенте аккумуляции β =40 часов. Данные расчеты приведены в таблице ниже.

Таблица 11.1 График продолжительности тепловой нагрузки отопления

Температура наружного воздуха, °С	Повторяемость температур наружного воздуха, час	Время снижения температуры воздуха внутри отапливаемого помещения до +12 °C
-50	0	3,69
-47,5	0	3,84
-42,5	0	4,18
-37,5	27	4,58
-32,5	123	5,06
-27,5	184	5,66
-22,5	368	6,41
-17,5	359	7,41
-12,5	824	8,76
-7,5	859	10,73
-2,5	2050	13,85
2,5	1034	19,58
7,5	465	33,89

7. На основе данных о частоте (потоке) отказов участков тепловой сети,

повторяемости температур наружного воздуха и данных о времени восстановления (ремонта) элемента (участка, НС, компенсатора и т.д.) тепловых сетей определяют вероятность отказа теплоснабжения потребителя. В случае отсутствия достоверных данных о времени восстановления теплоснабжения потребителей используют эмпирическую зависимость для времени, необходимого для ликвидации повреждения, предложенную Е.Я. Соколовым:

$$z_{\rm p} = a[1 + (b + cl_{\rm c.3})D^{1,2}]$$
(1.6)

где

a, b, c — постоянные коэффициенты, зависящие от способа укладки теплопровода (подземный, надземный) и его конструкции, а также от способа диагностики места повреждения и уровня организации ремонтных работ;

 $l_{\rm c.3}$ – расстояние между секционирующими задвижками, м;

D – условный диаметр трубопровода, м.

Расчет выполняется для каждого участка и/или элемента, входящего в путь от источника до абонента:

- по уравнению 1.5 вычисляется время ликвидации повреждения на і-том участке;
- по каждой градации повторяемости температур с использованием уравнения 1.4 вычисляется допустимое время проведения ремонта;
- вычисляется относительная и накопленная частота событий, при которых время снижения температуры до критических значений меньше чем время ремонта повреждения;
- вычисляются относительные доли (см. уравнение 1.7) и поток отказов (см. уравнение 1.8) участка тепловой сети, способный привести к снижению температуры в отапливаемом помещении до температуры +12 °C.

$$\bar{z} = \left(\frac{z_{i,j}}{z_{\rm p}}\right) \cdot \frac{\tau_j}{\tau_{\rm on}} \tag{1.7}$$

$$\overline{\omega}_i = \lambda_i L_i \cdot \sum_{j=1}^{j=N} \overline{z}_{i,j}$$
 (1.8)

• вычисляется вероятность безотказной работы участка тепловой сети

относительно абонента

$$p_i = exp(-\overline{\omega}_i) \tag{1.9}$$

В системах теплоснабжения одним из самых распространенных способов повышения надежности является резервирование участков, суммы участков, целых магистральных выводов или насосных агрегатов, секционирующих задвижек и т.д. А наиболее часто применяемым способом расчета систем теплоснабжения с резервированием - приведение реальной системы теплоснабжения к эквивалентной модели параллельных или последовательно-параллельных соединений участков тепловой сети. Этот метод, конечно, является не единственным, но значительно более простым чем, например, «метод минимальных путей – минимальных сечений».

Однако, в любом случае, прежде чем решать задачу эквивалентирования схемы необходимо выполнить структурный анализ тепловой сети, который заключается в том, чтобы определить весь набор путей передачи теплоносителя от источника тепловой мощности к потребителю (узлу «сброса» (иногда «стока») тепловой нагрузки). Выявленные пути и их совместное рассмотрение позволяют свести схему к параллельному или последовательно параллельному соединению участков тепловой сети.

Все эти приемы и методы хорошо известны и широко применяются при структурном анализе сложных схем электрических сетей и неоднократно апробированы при анализе надежности схем теплоснабжения. Алгоритм решения задачи расчета надежности резервированных тепловых сетей сводится к следующим простым шагам и вычислениям.

- Шаг 1. Выделяется потребитель, относительно которого выполняется расчет надежности вероятности безотказной работы теплоснабжения.
- Шаг 2. Выполняется структурный анализ тепловой сети, позволяющий выделить все пути, по которым можно осуществить передачу теплоносителя от источника до выделенного потребителя. В некоторых специализированных программных комплексах (например, «Zulu») эта процедура осуществляется автоматически, что значительно сокращает время на структурный анализ тепловой сети.
- Шаг 3. Составляется эквивалентная схема путей для расчета надежности теплоснабжения. Она будет состоять из параллельно-последовательных или

последовательно-параллельных участков тепловой сети (в смысле надежности).

Шаг 4. Для всех последовательных участков пути, также как для не резервированных участков, рассчитывается их вероятность безотказной работы. По результатам расчетов определяются:

 вероятность безотказной работы эквиватентного незарезервированного јтого пути:

$$p_{ej} = \prod_{i=1}^{n} p_i \tag{1.10}$$

• вероятность отказа эквивалентного нерезервированного ј-того пути:

$$q_{ej} = 1 - \prod_{i=1}^{n} p_i \tag{1.11}$$

• параметр потока отказов эквивалентного незарезервированного ј-того пути:

$$\overline{\omega}_{ej} = \lambda_i L_i \cdot \sum_{j=1}^{j=N} \overline{z}_{j,k}$$
 (1.12)

• среднее время безотказной работы эквивалентного незарезервированного і-того пути:

$$\bar{T}_{\text{бр.}ej} = 1/\bar{\omega}_{ej} \tag{1.13}$$

• среднее время восстановления (ремонта) эквивалентного незарезервированного j-того пути:

$$\bar{T}_{\text{BC}.ej} = q_{ej}/\bar{\omega}_{ej} \tag{1.14}$$

при этом

$$q_{ej} = \lambda_{ej} \cdot \bar{T}_{\text{BC},ej} \tag{1.15}$$

Шаг 5. После сведения всех показателей надежности нерезервированных участков пути к эквивалентным значениям рассчитываются показатели надежности параллельных соединений участков пути, состоящих из эквивалентных последовательных участков пти:

• вероятность безотказной работы эквивалентного резервированного kтого пути:

$$p_{ek} = 1 - \prod_{j=1}^{m} q_{ej} \tag{1.16}$$

• вероятноть отказа эквивалентного резервированного k-того пути:

$$q_{ek} = \prod_{j=1}^{m} q_{ej} \tag{1.17}$$

• параметр потока отказов эквивалентного резервированного k-того пути:

$$\overline{\omega}_{ek} = \sum_{j=1}^{m} \omega_{ej} \prod_{\substack{i=1\\i\neq j}}^{m-1} \omega_{ei} \overline{T}_{ej}$$
(1.18)

• среднее время безотказной работы эквивалентного резервированного kтого пути:

$$\bar{T}_{6p.ek} = \left[\sum_{j=1}^{m} \omega_{ej} \prod_{\substack{i=1\\i\neq j}}^{m-1} \omega_{ei} \bar{T}_{ej} \right]^{-1}$$
(1.19)

• среднее время восстановления (ремонта) эквивалентного резервированного k-того пути:

$$\bar{T}_{ek} = \frac{\prod_{j=1}^{m-1} \omega_{ej} \bar{T}_{ej}}{\left[\sum_{j=1}^{m} \omega_{ej} \prod_{\substack{i=1\\i\neq j}}^{m-1} \omega_{ei} \bar{T}_{ej}\right]}$$
(1.20)

При расчетах надежности учитывалась возможность взаимного резервирования участков при угрозе отказа.

Энергоисточники города Архангельска, имеющие вывода тепловых сетей диаметром 300 мм и менее надземной прокладки, попадают в зону нормативной надежности, т.к. расчетное время восстановления таких участков не более 4,5 часов. А следовательно, вероятность отказа, приводящая к снижению температур в отапливаемых помещениях ниже +12°C на таких участках тепловых сетей равна нулю.

Таким образом, был проведен расчет вероятности безотказной работы тепловых сетей для ТЭЦ города Архангельска на каждый период действия схемы теплоснабжения.

11.2 Расчет вероятности безотказной работы тепловых сетей Архангельской ТЭЦ на каждый период действия схемы теплоснабжения

Вероятности безотказной работы на не резервируемых участков тепловой сети в модели первого уровня рассчитываются относительно тепловых камер, в которых к магистральным теплопроводам присоединены ответвления, обеспечивающие передачу тепловой энергии от магистрального теплопровода в городской район (микрорайон, планировочный квартал, кадастровый квартал).

Вероятности безотказной работы рассчитываются для всех магистральных теплопроводов (как не резервируемых теплопроводов), реестр которых установлен в электронной модели теплоснабжения города Архангельск.

Основные пути для расчета вероятности безотказной работы системы теплоснабжения приведены в таблице ниже.

Таблица 11.2 Расчетные пути для определения вероятности безотказной работы тепловых сетей

Полеов наши	Расчетный путь для оценки надежности те	пловых сетей от ТЭЦ города Архангельска
Номер пути	Начальная камера расчетного пути	Конечная камера расчетного пути
1	TK-45	С-28п-16
2	55-7a	55-19-16-2
3	АрхТЭЦ - 3 вывод	ТК-18т-4
4	АрхТЭЦ - МКП-1	ИП Зеленин (ЦТП)

11.2.1 Магистральный теплопровод Архангельской ТЭЦ (расчетный путь №1)

На рисунке ниже представлен расчетный путь №1 от ТК-45 до тепловой камеры C-28п-16.

Как видно из рисунка, надёжность теплоснабжения потребителей данной магистрали обеспечивается во всех периодах действия схемы теплоснабжения.

Рисунок 11.2 Путь для расчёта вероятности безотказной работы тепловых сетей от ТК-45 до C-28п-16

На рисунке 11.5 и в таблице ниже представлено изменение расчётных показателей вероятности безотказной работы магистральной тепловой сети от ТК-45 до С-28п-16 на каждый период действия схемы теплоснабжения.

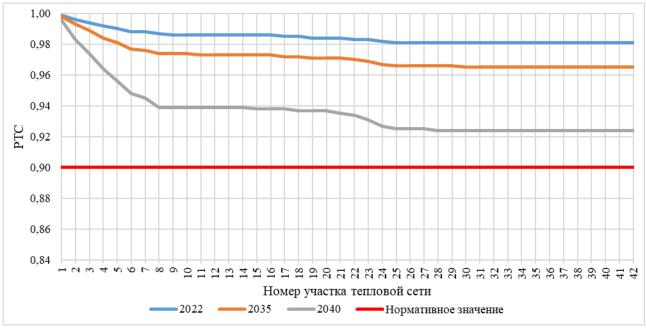


Рисунок 11.3 Вероятность безотказной работы тепловых сетей от ТК-45 до C-28п-16

Таблица 11.3 Изменение расчётных показателей вероятности безотказной работы магистральной тепловой сети от ТК-45 до C-28п-16

№ уч-ка	Нач. узел	Кон.узел	Длина участка, м	Расстояние между секционирующими задвижками, м	Диаметр участка, м	Тип прокладки(1- надземная, 2-подземная)	Год последней реконструкции	Продолжительность эксплуатации	Частота интенсивность отказа	Среднее время восстановление уч-ка	Параметр потока отказов теплоснабжения при отказе участка, 1/год	Параметр потока отказов теплоснабжения накопленным итогом, 1/год	ВБР на отопительный период 2021/2022	ВБР на 2030	ВБР на 2035	ВБР на 2040
1	TK-45	ID 21989	66,9	636,6	0,5	2	1977	45	0,00197	9,1	0,00059	0,00059	0,998	0,999	0,998	0,996
2	ID 21989	C-1	569,7	636,6	0,5	1	1977	45	0,0168	7,2	0,00187	0,00247	0,993	0,996	0,993	0,983
3	C-1	C-2	130	130	0,5	2	1977	45	0,00383	9,4	0,00115	0,00361	0,989	0,994	0,989	0,974
4	C-2	C-3	178	178	0,5	2	1977	45	0,00525	9,6	0,00157	0,00519	0,984	0,992	0,984	0,964
5	C-3	C-4	119	119	0,5	2	1977	45	0,00351	9,4	0,00105	0,00624	0,981	0,99	0,981	0,956
6	C-4	C-5	145	145	0,5	2	1977	45	0,00428	9,5	0,00128	0,00752	0,977	0,988	0,977	0,948
7	C-5	C-6	45	45	0,5	2	1977	45	0,00133	9	0,0004	0,00792	0,976	0,988	0,976	0,945
8	C-6	C-7	101	101	0,5	2	1977	45	0,00298	9,3	0,00089	0,00881	0,974	0,987	0,974	0,939
9	C-7	C-8	23	23	0,5	2	2002	20	0,00027	8,9	0,00008	0,00889	0,974	0,986	0,974	0,939
10	C-8	C-9	40	40	0,5	1	2002	20	0,00046	5,1	0,00001	0,0089	0,974	0,986	0,974	0,939
11	C-9	ID 26629	12	117	0,5	2	2002	20	0,00014	8,9	0,00004	0,00894	0,973	0,986	0,973	0,939
12	ID 26629	C-10	105	117	0,5	1	2002	20	0,00122	5,4	0,00003	0,00897	0,973	0,986	0,973	0,939
13	C-10	C-11	142	142	0,5	1	2001	21	0,00164	5,5	0,00004	0,00901	0,973	0,986	0,973	0,939
14	C-11	C-12	130	130	0,5	1	2001	21	0,0015	5,5	0,00004	0,00905	0,973	0,986	0,973	0,939
15	C-12	C-15	80	80	0,5	2	1999	23	0,00093	9,2	0,00028	0,00932	0,973	0,986	0,973	0,938
16	C-15	C-16	124	124	0,5	2	1999	23	0,00144	9,4	0,00043	0,00975	0,973	0,986	0,973	0,938
17	C-16	C-17	135	135	0,5	2	1999	23	0,00156	9,4	0,00047	0,01022	0,972	0,985	0,972	0,938
18	C-17	C-18	87	87	0,5	2	1999	23	0,00101	9,2	0,0003	0,01052	0,972	0,985	0,972	0,937
19	C-18	C-19	150	150	0,5	2	1999	23	0,00174	9,5	0,00052	0,01104	0,971	0,984	0,971	0,937
20	C-19	C-20	60	60	0,5	2	1997	25	0,00069	9,1	0,00021	0,01125	0,971	0,984	0,971	0,937
21	C-20	C-20a	40	40	0,3	2	1978	44	0,00107	8,1	0,00018	0,01143	0,971	0,984	0,971	0,935
22	C-20a	C-21	57	57	0,3	2	1978	44	0,00153	8,1	0,00026	0,01169	0,97	0,983	0,97	0,934
23	C-21	C-22	115	115	0,3	2	1978	44	0,00309	8,3	0,00052	0,01221	0,969	0,983	0,969	0,931
24	C-22	C-23	121	121	0,3	2	1978	44	0,00325	8,3	0,00055	0,01276	0,967	0,982	0,967	0,927
25	C-23	C-24	79	79	0,3	2	1978	44	0,00212	8,2	0,00036	0,01312	0,966	0,981	0,966	0,925

№ уч-ка	Нач. узел	Кон.узел	Длина участка, м	Расстояние между секционирующими задвижками, м	Диаметр участка, м	Тип прокладки(1- надземная, 2-подземная)	Год последней реконструкции	Продолжительность эксплуатации	Частота интенсивность отказа	Среднее время восстановление уч-ка	Параметр потока отказов теплоснабжения при отказе участка, 1/год	Параметр потока отказов теплоснабжения накопленным итогом, 1/год	ВБР на отопительный период 2021/2022	ВБР на 2030	ВБР на 2035	ВБР на 2040
26	C-24	C-25	129,1	129,1	0,3	1	2000	22	0,00149	4,3	0	0,01312	0,966	0,981	0,966	0,925
27	C-25	C-27	257,11	257,11	0,3	1	2000	22	0,00298	4,6	0,00001	0,01313	0,966	0,981	0,966	0,925
28	C-27	C-28	31,5	31,5	0,3	2	1978	44	0,00085	8,1	0,00014	0,01327	0,966	0,981	0,966	0,924
29	C-28	С-28п	0,1	0,1	0,3	1	1970	52	0,00001	4,1	0	0,01327	0,966	0,981	0,966	0,924
30	С-28п	С-28п-1	73	73	0,3	2	1992	30	0,00085	8,2	0,00014	0,01341	0,965	0,981	0,965	0,924
31	С-28п-1	С-28п-2	67	67	0,3	2	1992	30	0,00078	8,2	0,00013	0,01354	0,965	0,981	0,965	0,924
32	С-28п-2	С-28п-3	20	20	0,3	2	1992	30	0,00023	8	0,00004	0,01358	0,965	0,981	0,965	0,924
33	С-28п-3	С-28п-4	20	20	0,3	1	1992	30	0,00023	4,1	0	0,01358	0,965	0,981	0,965	0,924
34	С-28п-4	С-28п-4-1	149,5	149,5	0,3	1	1970	52	0,01	4,4	0	0,01358	0,965	0,981	0,965	0,924
35	С-28п-4-1	С-28п-4-2	13,5	13,5	0,3	1	1970	52	0,0009	4,1	0	0,01358	0,965	0,981	0,965	0,924
36	С-28п-4-2	С-28п-4-3	89	89	0,3	1	1970	52	0,00595	4,2	0	0,01358	0,965	0,981	0,965	0,924
37	С-28п-4-3	С-28п-12	95,8	95,8	0,3	1	1970	52	0,00641	4,3	0	0,01358	0,965	0,981	0,965	0,924
38	С-28п-12	C-28-19	71,6	71,6	0,3	1	1970	52	0,00479	4,2	0	0,01358	0,965	0,981	0,965	0,924
39	C-28-19	С-28п-13	30	30	0,3	1	1970	52	0,00201	4,1	0	0,01358	0,965	0,981	0,965	0,924
40	С-28п-13	С-28п-14	60	60	0,2	1	1970	52	0,00401	4	0	0,01358	0,965	0,981	0,965	0,924
41	С-28п-14	С-28п-15	60	60	0,2	1	1970	52	0,00401	3,7	0	0,01358	0,965	0,981	0,965	0,924
42	С-28п-15	С-28п-16	100	100	0,2	1	1970	52	0,00669	3,8	0	0,01358	0,965	0,981	0,965	0,924

11.2.2 Магистральный теплопровод Архангельской ТЭЦ (расчетный путь №2)

На рисунке ниже представлен расчетный путь №2 от тепловой камеры 55-7а до тепловой камеры 55-19-16-2.

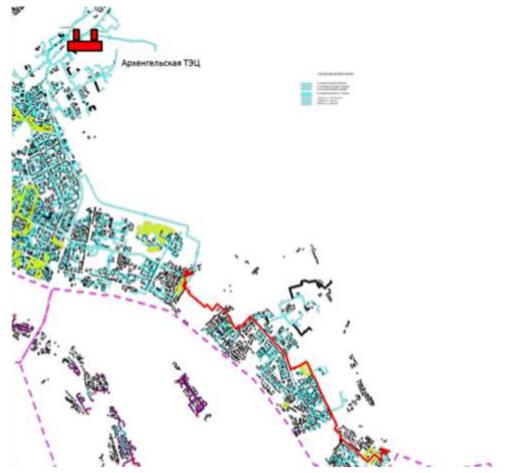


Рисунок 1.1 Путь для расчёта вероятности безотказной работы тепловых сетей от 55-7а до 55-19-16-2

На рисунке 11.4 и в таблице ниже представлено изменение расчётных показателей вероятности безотказной работы магистральной тепловой сети от 55-7а до 55-19-16-2 на каждый период действия схемы теплоснабжения.

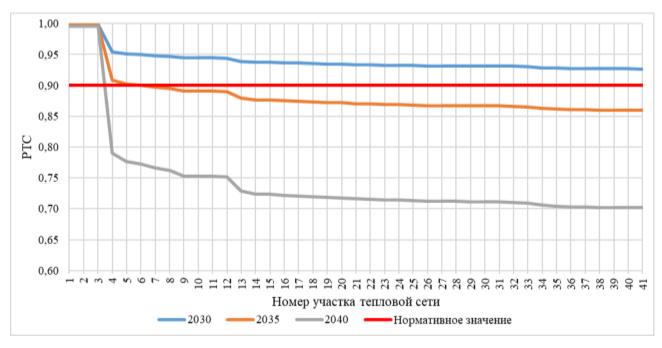


Рисунок 11.4 Вероятность безотказной работы тепловых сетей от 55-7а до 55-19-16-2

Таблица 11.4 Изменение расчётных показателей вероятности безотказной работы магистральной тепловой сети от 55-7a до 55-19-16-2

№ уч-ка	Нач. узел	Кон. узел	Длина участка, м	Расстояние между секционирующими задвижками, м	Диаметр участка, м	Тип прокладки(1- надземная, 2- подземная)	Год последней реконструкции	Продолжительность эксплуатации	Частота интенсивность отказа	Среднее время восстановление уч-ка	Параметр потока отказов теплоснабжения при отказе участка, 1/год	Параметр потока отказов теплоснабжения накопленным итогом, 1/год	ВБР на отопительный период 2021/2022	ВБР на 2030	ВБР на 2035	ВБР на 2040
1	55-7a	TK-55-8	123,5	123,5	0,8	1	1975	47	0,00447	7,3	0,0005	0,0005	1	0,999	0,998	0,996
2	TK-55-8	ПНС-1	20,1	20,1	0,8	1	1976	46	0,00065	6,6	0,00007	0,00057	0,999	0,999	0,998	0,995
3	ПНС-1	TK-55-8*	19	19	0,8	1	1976	46	0,00062	6,6	0,00007	0,00064	0,999	0,999	0,998	0,995
4	TK-55-8*	55-9	1177	1177	0,8	1	1976	46	0,03835	14,5	0,02921	0,02985	0,971	0,954	0,908	0,79
5	55-9	KHC-10	396,9	396,9	0,7	1	1976	46	0,01293	8,3	0,00218	0,03203	0,968	0,951	0,902	0,777
6	КНС-10	55-10	207,9	207,9	0,7	1	1976	46	0,00677	7,2	0,00076	0,03279	0,968	0,95	0,9	0,772
7	55-10	55-10a	249,1	249,1	0,7	1	1976	46	0,00812	7,4	0,00091	0,03369	0,967	0,948	0,897	0,766
8	55-10a	55-11	185	185	0,7	1	1976	46	0,00603	7	0,00067	0,03437	0,966	0,947	0,895	0,762
9	55-11	Узел Е	285	285	0,7	1	1976	46	0,00929	7,6	0,00157	0,03593	0,965	0,945	0,891	0,753
10	Узел Е	55-12	51,8	51,8	0,7	1	1998	24	0,0006	6,2	0,00003	0,03596	0,965	0,945	0,891	0,753
11	55-12	55-13	150	150	0,7	1	1998	24	0,00174	6,8	0,00019	0,03616	0,964	0,945	0,891	0,753
12	55-12	55-13	378,1	378,1	0,7	1	1998	24	0,00438	8,2	0,00074	0,0369	0,964	0,944	0,89	0,752
13	55-13	55-14	279	279	0,7	2	1976	46	0,00909	11,6	0,00396	0,04086	0,96	0,938	0,879	0,729
14	55-14	55-15	96,5	96,5	0,7	2	1976	46	0,00314	10,4	0,00094	0,0418	0,959	0,937	0,876	0,724
15	55-15	ID 19742	0,3	155,3	0,6	2	1988	34	0	10,2	0	0,0418	0,959	0,937	0,876	0,724
16	ID 19742	TK-55-16	155	155,3	0,6	2	1988	34	0,00179	10,2	0,00054	0,04234	0,959	0,936	0,875	0,722
17	TK-55-16	TK-55-17	150	150	0,6	2	1988	34	0,00174	10,1	0,00052	0,04286	0,958	0,936	0,874	0,721
18	TK-55-17	TK-55-18	158	158	0,6	2	1988	34	0,00183	10,2	0,00055	0,04341	0,958	0,935	0,873	0,72
19	TK-55-18	55-19	157	157	0,6	2	1988	34	0,00182	10,2	0,00054	0,04395	0,957	0,934	0,872	0,718
20	55-19	55-19-1	98	98	0,6	2	1988	34	0,00113	9,8	0,00034	0,04429	0,957	0,934	0,872	0,717
21	55-19-1	55-19-2	163	163	0,6	2	1988	34	0,00189	10,2	0,00057	0,04486	0,956	0,933	0,87	0,716
22	55-19-2	55-19-3	121,5	121,5	0,6	2	1988	34	0,00141	10	0,00042	0,04528	0,956	0,933	0,87	0,715
23	55-19-3	Узел А	114	114	0,6	2	1988	34	0,00132	9,9	0,0004	0,04567	0,955	0,932	0,869	0,714
24	Узел А	55-19-4	129,4	129,4	0,6	1	1988	34	0,0015	6,1	0,00008	0,04575	0,955	0,932	0,869	0,714
25	55-19-4	55-19-4a	223	223	0,6	1	1988	34	0,00258	6,5	0,00029	0,04604	0,955	0,932	0,868	0,713

№ уч-ка	Нач. узел	Кон. узел	Длина участка, м	Расстояние между секционирующими задвижками, м	Диаметр участка, м	Тип прокладки(1- надземная, 2- подземная)	Год последней реконструкции	Продолжительность эксплуатации	Частота интенсивность отказа	Среднее время восстановление уч-ка	Параметр потока отказов теплоснабжения при отказе участка, 1/год	Параметр потока отказов теплоснабжения накопленным итогом, 1/год	ВБР на отопительный период 2021/2022	ВБР на 2030	ВБР на 2035	ВБР на 2040
26	55-19-4a	55-19-5	341,1	341,1	0,6	1	1988	34	0,00395	7,1	0,00044	0,04648	0,955	0,931	0,867	0,712
27	55-19-5	55-19-5a	109,4	109,4	0,6	1	1988	34	0,00127	6	0,00007	0,04655	0,955	0,931	0,867	0,712
28	55-19-5a	55-19-5a	81	81	0,6	1	1988	34	0,00094	5,8	0,00005	0,0466	0,954	0,931	0,867	0,712
29	55-19-5a	55-19-6	171,4	171,4	0,6	1	1988	34	0,00198	6,3	0,00011	0,0467	0,954	0,931	0,867	0,711
30	55-19-6	55-19-6a	90,4	90,4	0,6	1	1988	34	0,00105	5,9	0,00006	0,04676	0,954	0,931	0,867	0,711
31	55-19-6a	55-19-7	154,5	154,5	0,6	1	1988	34	0,00179	6,2	0,00009	0,04685	0,954	0,931	0,867	0,711
32	55-19-7	55-19-7a	258,3	258,3	0,6	1	1988	34	0,00299	6,7	0,00033	0,04719	0,954	0,931	0,866	0,71
33	55-19-7a	55-19-8	367,2	367,2	0,6	1	1988	34	0,00425	7,2	0,00047	0,04766	0,953	0,93	0,865	0,709
34	55-19-8	55-19-9	273	273	0,6	2	1988	34	0,00316	10,8	0,00138	0,04904	0,952	0,928	0,863	0,706
35	55-19-9	55-19-10	143	143	0,6	2	1988	34	0,00166	10,1	0,0005	0,04954	0,952	0,928	0,862	0,704
36	55-19-10	55-19-11	150	150	0,6	2	1988	34	0,00174	10,1	0,00052	0,05006	0,951	0,927	0,861	0,703
37	55-19- 11прямо	55-19-15	124	124	0,3	2	1992	30	0,00144	8,3	0,00024	0,0503	0,951	0,927	0,861	0,703
38	55-19-15	55-19-16	123	123	0,3	2	1992	30	0,00142	8,3	0,00024	0,05054	0,951	0,927	0,86	0,702
39	55-19-16	ID 14673	100	130	0,2	1	1992	30	0,00116	3,8	0	0,05054	0,951	0,927	0,86	0,702
40	ID 14673	55-19-16- 1	30	130	0,15	1	1992	30	0,00035	3,7	0	0,05054	0,951	0,927	0,86	0,702
41	55-19-16- 1	55-19-16- 2	155	155	0,125	2	1992	30	0,00179	7,5	0,0003	0,05084	0,95	0,926	0,86	0,702

Как видно из представленных выше материалов, прогнозируемая надежность теплоснабжения потребителей становится ниже нормативного значения. Для улучшения показателя вероятности безотказной работы к перекладке предлагаются участки тепловых сетей. Данное мероприятие рассмотрено в Главе 8.

На рисунке 11.5 и в таблице ниже представлено изменение расчётных показателей вероятности безотказной работы магистральной тепловой сети от 55-7а до 55-19-16-2 на каждый период действия схемы теплоснабжения с учетом проведения предложенных мероприятий.

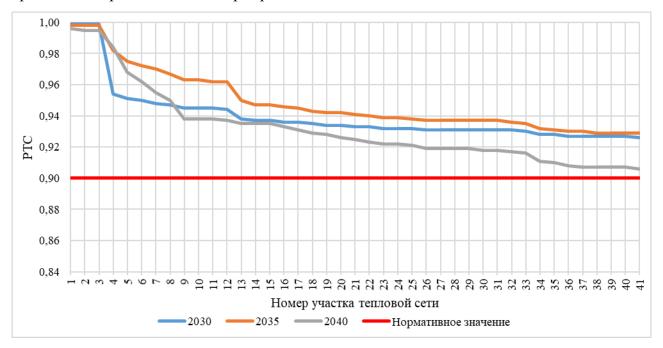


Рисунок 11.5 Вероятность безотказной работы тепловых сетей от 55-7а до 55-19-16-2 с учетом проведения мероприятий

Таблица 11.5 Изменение расчётных показателей вероятности безотказной работы магистральной тепловой сети от 55-7а до 55-19-16-2 с учетом проведения предложенных мероприятий

№ уч-ка	Нач. узел	Кон. узел	Длина участка, м	Расстояние между секционирующими задвижками, м	Диаметр участка, м	Тип прокладки(1- надземная, 2- подземная)	Год последней реконструкции	Продолжительность эксплуатации	Частота интенсивность отказа	Среднее время восстановление уч-ка	Параметр потока отказов теплоснабжения при отказе участка, 1/год	Параметр потока отказов теплоснабжения накопленным итогом, 1/год	ВБР на отопительный период 2021/2022	ВБР на 2030	ВБР на 2035	ВБР на 2040
1	55-7a	TK-55-8	123,5	123,5	0,8	1	1975	47	0,00447	7,3	0,0005	0,0005	1	0,999	0,998	0,996
2	TK-55-8	ПНС-1	20,1	20,1	0,8	1	1976	46	0,00065	6,6	0,00007	0,00057	0,999	0,999	0,998	0,995
3	ПНС-1	TK-55-8*	19	19	0,8	1	1976	46	0,00062	6,6	0,00007	0,00064	0,999	0,999	0,998	0,995
4	TK-55-8*	55-9	1177	1177	0,8	1	1976	46	0,03835	14,5	0,02921	0,02985	0,971	0,954	0,982	0,984
5	55-9	КНС-10	396,9	396,9	0,7	1	1976	46	0,01293	8,3	0,00218	0,03203	0,968	0,951	0,975	0,968
6	КНС-10	55-10	207,9	207,9	0,7	1	1976	46	0,00677	7,2	0,00076	0,03279	0,968	0,95	0,972	0,962
7	55-10	55-10a	249,1	249,1	0,7	1	1976	46	0,00812	7,4	0,00091	0,03369	0,967	0,948	0,97	0,955
8	55-10a	55-11	185	185	0,7	1	1976	46	0,00603	7	0,00067	0,03437	0,966	0,947	0,967	0,95
9	55-11	Узел Е	285	285	0,7	1	1976	46	0,00929	7,6	0,00157	0,03593	0,965	0,945	0,963	0,938
10	Узел Е	55-12	51,8	51,8	0,7	1	1998	24	0,0006	6,2	0,00003	0,03596	0,965	0,945	0,963	0,938
11	55-12	55-13	150	150	0,7	1	1998	24	0,00174	6,8	0,00019	0,03616	0,964	0,945	0,962	0,938
12	55-12	55-13	378,1	378,1	0,7	1	1998	24	0,00438	8,2	0,00074	0,0369	0,964	0,944	0,962	0,937
13	55-13	55-14	279	279	0,7	2	1976	46	0,00909	11,6	0,00396	0,04086	0,96	0,938	0,95	0,935
14	55-14	55-15	96,5	96,5	0,7	2	1976	46	0,00314	10,4	0,00094	0,0418	0,959	0,937	0,947	0,935
15	55-15	ID 19742	0,3	155,3	0,6	2	1988	34	0	10,2	0	0,0418	0,959	0,937	0,947	0,935
16	ID 19742	TK-55-16	155	155,3	0,6	2	1988	34	0,00179	10,2	0,00054	0,04234	0,959	0,936	0,946	0,933
17	TK-55-16	TK-55-17	150	150	0,6	2	1988	34	0,00174	10,1	0,00052	0,04286	0,958	0,936	0,945	0,931
18	TK-55-17	TK-55-18	158	158	0,6	2	1988	34	0,00183	10,2	0,00055	0,04341	0,958	0,935	0,943	0,929
19	TK-55-18	55-19	157	157	0,6	2	1988	34	0,00182	10,2	0,00054	0,04395	0,957	0,934	0,942	0,928
20	55-19	55-19-1	98	98	0,6	2	1988	34	0,00113	9,8	0,00034	0,04429	0,957	0,934	0,942	0,926
21	55-19-1	55-19-2	163	163	0,6	2	1988	34	0,00189	10,2	0,00057	0,04486	0,956	0,933	0,941	0,925
22	55-19-2	55-19-3	121,5	121,5	0,6	2	1988	34	0,00141	10	0,00042	0,04528	0,956	0,933	0,94	0,923
23	55-19-3	Узел А	114	114	0,6	2	1988	34	0,00132	9,9	0,0004	0,04567	0,955	0,932	0,939	0,922
24	Узел А	55-19-4	129,4	129,4	0,6	1	1988	34	0,0015	6,1	0,00008	0,04575	0,955	0,932	0,939	0,922
25	55-19-4	55-19-4a	223	223	0,6	1	1988	34	0,00258	6,5	0,00029	0,04604	0,955	0,932	0,938	0,921
26	55-19-4a	55-19-5	341,1	341,1	0,6	1	1988	34	0,00395	7,1	0,00044	0,04648	0,955	0,931	0,937	0,919

№ уч-ка	Нач. узел	Кон. узел	Длина участка, м	Расстояние между секционирующими задвижками, м	Диаметр участка, м	Тип прокладки(1- надземная, 2- подземная)	Год последней реконструкции	Продолжительность эксплуатации	Частота интенсивность отказа	Среднее время восстановление уч-ка	Параметр потока отказов теплоснабжения при отказе участка, 1/год	Параметр потока отказов теплоснабжения накопленным итогом, 1/год	ВБР на отопительный период 2021/2022	ВБР на 2030	ВБР на 2035	ВБР на 2040
27	55-19-5	55-19-5a	109,4	109,4	0,6	1	1988	34	0,00127	6	0,00007	0,04655	0,955	0,931	0,937	0,919
28	55-19-5a	55-19-5a	81	81	0,6	1	1988	34	0,00094	5,8	0,00005	0,0466	0,954	0,931	0,937	0,919
29	55-19-5a	55-19-6	171,4	171,4	0,6	1	1988	34	0,00198	6,3	0,00011	0,0467	0,954	0,931	0,937	0,919
30	55-19-6	55-19-6a	90,4	90,4	0,6	1	1988	34	0,00105	5,9	0,00006	0,04676	0,954	0,931	0,937	0,918
31	55-19-6a	55-19-7	154,5	154,5	0,6	1	1988	34	0,00179	6,2	0,00009	0,04685	0,954	0,931	0,937	0,918
32	55-19-7	55-19-7a	258,3	258,3	0,6	1	1988	34	0,00299	6,7	0,00033	0,04719	0,954	0,931	0,936	0,917
33	55-19-7a	55-19-8	367,2	367,2	0,6	1	1988	34	0,00425	7,2	0,00047	0,04766	0,953	0,93	0,935	0,916
34	55-19-8	55-19-9	273	273	0,6	2	1988	34	0,00316	10,8	0,00138	0,04904	0,952	0,928	0,932	0,911
35	55-19-9	55-19-10	143	143	0,6	2	1988	34	0,00166	10,1	0,0005	0,04954	0,952	0,928	0,931	0,91
36	55-19-10	55-19-11	150	150	0,6	2	1988	34	0,00174	10,1	0,00052	0,05006	0,951	0,927	0,93	0,908
37	55-19- 11прямо	55-19-15	124	124	0,3	2	1992	30	0,00144	8,3	0,00024	0,0503	0,951	0,927	0,93	0,907
38	55-19-15	55-19-16	123	123	0,3	2	1992	30	0,00142	8,3	0,00024	0,05054	0,951	0,927	0,929	0,907
39	55-19-16	ID 14673	100	130	0,2	1	1992	30	0,00116	3,8	0	0,05054	0,951	0,927	0,929	0,907
40	ID 14673	55-19-16- 1	30	130	0,15	1	1992	30	0,00035	3,7	0	0,05054	0,951	0,927	0,929	0,907
41	55-19-16- 1	55-19-16- 2	155	155	0,12 5	2	1992	30	0,00179	7,5	0,0003	0,05084	0,95	0,926	0,929	0,906

11.2.3 Магистральный теплопровод Архангельской ТЭЦ (расчетный путь №3)

На рисунке 11.6 представлен расчетный путь №3 от ТЭЦ до ТК-18т-4.



Рисунок 11.6 Путь для расчёта вероятности безотказной работы тепловых сетей от Архангельской ТЭЦ до ТК-18т-4

На рисунке 11.7 и в таблице ниже представлено изменение расчётных показателей вероятности безотказной работы магистральной тепловой сети от ТЭЦ до ТК-18т-4 на каждый период действия схемы теплоснабжения.

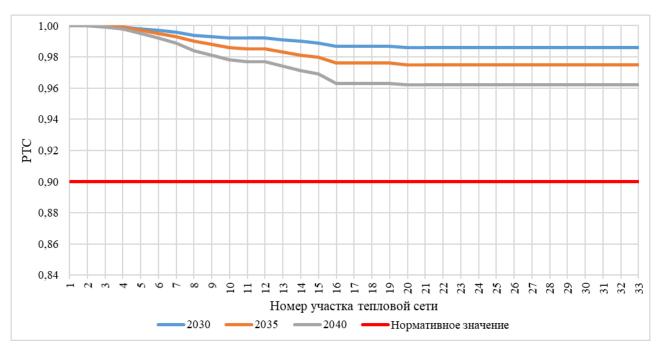


Рисунок 11.7 Вероятность безотказной работы тепловых сетей от Архангельской ТЭЦ до ТК-18т-4

Как видно из рисунка, надёжность теплоснабжения потребителей данной магистрали обеспечивается во всех периодах действия схемы теплоснабжения.

Таблица 11.6 Изменение расчётных показателей вероятности безотказной работы магистральной тепловой сети отАрхангельской ТЭЦ до ТК-18т-4

№ уч-ка	Нач. узел	Кон.узел	Длина участка, м	Расстояние между секционирующими задвижками, м	Диаметр участка, м	Тип прокладки(1- надземная, 2-подземная)	Год последней реконструкции	Продолжительность эксплуатации	Частота интенсивность отказа	Среднее время восстановление уч-ка	Параметр потока отказов теплоснабжения при отказе участка, 1/год	Параметр потока отказов теплоснабжения накопленным итогом, 1/год	ВБР на отопительный период 2012/2013 года	ВБР на 2030	ВБР на 2035	ВБР на 2040
1	3 вывод	ТК-1т	1	71	0,5	1	1990	32	0,00001	5,2	0	0	1,000	1,000	1,000	1,000
2	ТК-1т	TK-A-5	70	71	0,5	1	1990	32	0,00081	5,2	0,00002	0,00002	1,000	1,000	1,000	1,000
3	TK-A-5	ТК 2т	362	362	0,5	1	1990	32	0,00419	6,4	0,00022	0,00024	1,000	1,000	1,000	0,999
4	ТК 2т	2т -1	150	1067	0,5	1	1990	32	0,00174	9,1	0,00052	0,00076	0,999	0,999	0,999	0,998
5	2т -1	2т -1а	250	1067	0,5	1	1990	32	0,00289	9,1	0,00087	0,00163	0,998	0,998	0,997	0,995
6	2т -1	2т -1а	377	1067	0,5	1	1990	32	0,00436	9,1	0,00131	0,00294	0,997	0,997	0,995	0,992
7	2т -1а	ТК-3т	290	1067	0,5	1	1990	32	0,00336	9,1	0,00101	0,00394	0,996	0,996	0,993	0,989
8	ТК-3т	ТК-4т	953,1	953,1	0,5	1	1990	32	0,01103	8,7	0,00186	0,0058	0,994	0,994	0,99	0,984
9	ТК-4т	ТК-5т	773	773	0,4	1	1990	32	0,00895	6,8	0,001	0,0068	0,993	0,993	0,988	0,981
10	ТК-5т	ТК-6т	965,5	965,5	0,4	1	1990	32	0,01118	7,4	0,00125	0,00805	0,992	0,992	0,986	0,978
11	ТК-6т	ТК-6ат	187	187	0,4	1	1990	32	0,00216	5,1	0,00005	0,0081	0,992	0,992	0,985	0,977
12	ТК-бат	ТК-7т	435	435	0,4	1	1990	32	0,00504	5,8	0,00027	0,00837	0,992	0,992	0,985	0,977
13	ТК-7т	ТК-8т	716	716	0,4	1	1990	32	0,00829	6,6	0,00092	0,00929	0,991	0,991	0,983	0,974
14	ТК-8т	ТК-9т	837	837	0,4	1	1990	32	0,00969	7	0,00108	0,01037	0,99	0,99	0,981	0,971
15	ТК-9т	ТК-10т	758,4	758,4	0,4	1	1990	32	0,00878	6,8	0,00098	0,01135	0,989	0,989	0,98	0,969
16	ТК-10т	ТК-11т	1065,9	1065,9	0,4	1	1990	32	0,01234	7,7	0,00208	0,01343	0,987	0,987	0,976	0,963
17	ТК-11т	ID 25602	160,4	200,4	0,3	1	1998	24	0,00186	4,5	0	0,01343	0,987	0,987	0,976	0,963
18	ID 25602	ID 25604	25	200,4	0,35	1	1998	24	0,00029	4,8	0	0,01343	0,987	0,987	0,976	0,963
19	ID 25604	ТК-12т	15	200,4	0,35	2	1998	24	0,00017	8,8	0,00005	0,01348	0,987	0,987	0,976	0,963
20	ТК-12т	ID 22006	187	261,2	0,35	2	1998	24	0,00216	9	0,00065	0,01413	0,986	0,986	0,975	0,962
21	ID 22006	ID 22007	23,2	261,2	0,35	1	1998	24	0,00027	4,9	0	0,01413	0,986	0,986	0,975	0,962
22	ID 22007	ID 22008	43	261,2	0,35	2	1998	24	0,0005	9	0,00015	0,01428	0,986	0,986	0,975	0,962
23	ID 22008	ТК-14т	8	261,2	0,35	1	1998	24	0,00009	4,9	0	0,01428	0,986	0,986	0,975	0,962
24	ТК-14т	ТК-15т	64,4	64,4	0,35	1	1998	24	0,00075	4,4	0	0,01428	0,986	0,986	0,975	0,962
25	ТК-15т	ТК-16т	67	67	0,35	1	1998	24	0,00078	4,4	0	0,01428	0,986	0,986	0,975	0,962

№ уч-ка	Нач. узел	Кон.узел	Длина участка, м	Расстояние между секционирующими задвижками, м	Диаметр участка, м	Тип прокладки(1- надземная, 2-подземная)	Год последней реконструкции	Продолжительность эксплуатации	Частота интенсивность отказа	Среднее время восстановление уч-ка	Параметр потока отказов теплоснабжения при отказе участка, 1/год	Параметр потока отказов теплоснабжения накопленным итогом, 1/год	ВБР на отопительный период 2012/2013 года	ВБР на 2030	ВБР на 2035	ВБР на 2040
26	ТК-16т	ТК-16т-а	10	10	0,25	1	1998	24	0,00012	3,9	0	0,01428	0,986	0,986	0,975	0,962
27	ТК-16т-а	ТК-17т	159	159	0,25	1	1998	24	0,00184	4,1	0	0,01428	0,986	0,986	0,975	0,962
28	ТК-17т	ТК-18т	295,3	295,3	0,25	1	1998	24	0,00342	4,4	0	0,01428	0,986	0,986	0,975	0,962
29	ТК-18т	ID 20347	0,3	286,3	0,2	1	1998	24	0	4	0	0,01428	0,986	0,986	0,975	0,962
30	ID 20347	ТК-18т-1	286	286,3	0,2	1	1998	24	0,00331	4	0	0,01428	0,986	0,986	0,975	0,962
31	ТК-18т-1	ТК-18т-2	920	920	0,2	1	1998	24	0,01065	4,9	0,00005	0,01433	0,986	0,986	0,975	0,962
32	ТК-18т-2	ТК-18т-3	10	10	0,2	1	1998	24	0,00012	3,7	0	0,01433	0,986	0,986	0,975	0,962
33	ТК-18т-3	ТК-18т-4	215	215	0,15	1	1998	24	0,00249	3,7	0	0,01433	0,986	0,986	0,975	0,962

11.2.4 Магистральный теплопровод Архангельской ТЭЦ (расчетный путь №4)

На рисунке 1.9 представлен расчетный путь №4 от ТЭЦ до потребителя ул.70 лет Октября, 8.

Рисунок 11.8 Путь для расчёта вероятности безотказной работы тепловых сетей от Архангельской ТЭЦ до потребителя ул.70лет Октября, 8

На рисунке 11.9 и в таблице ниже представлено изменение расчётных показателей вероятности безотказной работы магистральной тепловой сети от Вывод МКП-1 до ул.70 лет Октября, 8 на каждый период действия схемы теплоснабжения.

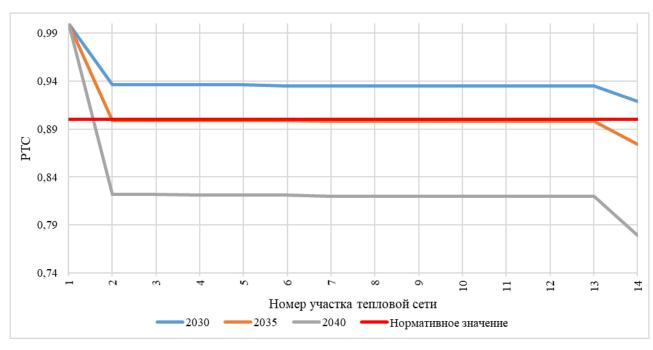


Рисунок 11.9 Вероятность безотказной работы тепловых сетей от Архангельской ТЭЦ до ТК-18т-4

Таблица 11.7 Изменение расчётных показателей вероятности безотказной работы магистральной тепловой сети отАрхангельской ТЭЦ до потребителя ул.70лет Октября, 8

№ уч-ка	Нач. узел	Кон.узел	Длина участка, м	Расстояние между секционирующими задвижками, м	Диаметр участка, м	Тип прокладки(1- надземная, 2-подземная)	Год последней реконструкции	Продолжительность эксплуатации	Частота интенсивность отказа	Среднее время восстановление уч-ка	Параметр потока отказов теплоснабжения при отказе участка, 1/год	Параметр потока отказов теплоснабжениянакопле нным итогом, 1/год	ВБР на отопительный период 2012/2013 года	ВБР на 2030	ВБР на 2035	ВБР на 2040
1	Вывод МКП-1	МКП-1	10	10	0,6	2	1984	38	0,00014	9,3	0,00004	0,00004	1	1	1	1
2	МКП-1	ПНС-SO4	3168	3168	0,6	1	1984	38	0,04538	20,9	0,04202	0,04207	0,959	0,936	0,899	0,822
3	ПНС-SO4	3УТ1-16л	0,3	0,3	0,5	1	1984	38	0	5	0	0,04207	0,959	0,936	0,899	0,822
4	3УТ1-16л	100	136	136	0,5	1	1984	38	0,00195	5,5	0,00005	0,04211	0,959	0,936	0,899	0,821
5	100	2УТ2-1	283	283	0,4	1	1984	38	0,00405	5,3	0,0001	0,04221	0,959	0,936	0,899	0,821
6	2УТ2-1	2УТ2-2	360	360	0,4	1	1984	38	0,00516	5,6	0,00012	0,04233	0,959	0,935	0,899	0,821
7	2УТ2-2	2УТ2-3	230	230	0,4	1	1984	38	0,00329	5,2	0,00008	0,04241	0,958	0,935	0,898	0,82
8	2УТ2-3	2УТ2-4/4- 1	152	152	0,4	1	1984	38	0,00218	5	0,00001	0,04242	0,958	0,935	0,898	0,82
9	2УТ2-4/4- 1	2УТ2-4	58	58	0,4	1	1984	38	0,00083	4,7	0	0,04242	0,958	0,935	0,898	0,82
10	2УТ2-4	2УТ2-5	130	130	0,4	1	1984	38	0,00186	4,9	0,00001	0,04243	0,958	0,935	0,898	0,82
11	2УТ2-5	2УТ2-6	140	140	0,4	1	1984	38	0,00201	4,9	0,00001	0,04244	0,958	0,935	0,898	0,82
12	2УТ2-6	2УТ2-8	120	120	0,4	1	1984	38	0,00172	4,9	0,00001	0,04245	0,958	0,935	0,898	0,82
13	2УТ2-8	2УТ2-9	25	25	0,4	1	1984	38	0,00036	4,6	0	0,04245	0,958	0,935	0,898	0,82
14	2УТ2-9	ул.70 лет Октября, 8	2553,1	2553 ,1	0,3	1	1984	38	0,03657	9,5	0,01095	0,0534	0,948	0,919	0,874	0,779

Как видно из представленных выше материалов, прогнозируемая надежность теплоснабжения потребителей становится ниже нормативного значения. Для улучшения показателя вероятности безотказной работы предлагается вывести из эксплуатации 3-й вывод АТЭЦ, теплоснабжение потребителей обеспечить от новой котельной. Данное мероприятие рассмотрено в Главе 7.

11.1 Применение на источниках тепловой энергии рациональных тепловых схем с дублированными связями и новых технологий, обеспечивающих нормативную готовность энергетического оборудования

Применение рациональных тепловых схем, с дублированными связями, обеспечивающих готовность энергетического оборудования источников теплоты, выполняется на этапе их проектирования. При этом топливо-, электро- и водоснабжение источников теплоты, обеспечивающих теплоснабжение потребителей первой категории, предусматривается по двум независимым вводам от разных источников, а также использование запасов резервного топлива. Источники теплоты, обеспечивающие теплоснабжение потребителей второй и третьей категории, обеспечиваются электро- и водоснабжением по двум независимым вводам от разных источников и запасами резервного топлива. Кроме того, для теплоснабжения потребителей первой категории устанавливаются местные резервные (аварийные) источники теплоты (стационарные или передвижные). При этом допускается резервирование, обеспечивающее в аварийных ситуациях 100%-ную подачу теплоты от других тепловых сетей. При резервировании теплоснабжения промышленных предприятий, как правило, используются местные резервные (аварийные) источники теплоты.

11.1.1 Установка резервного оборудования

Установка резервного оборудования не требуется.

11.1.2 Организация совместной работы нескольких источников тепловой энергии на единую тепловую сеть

По результатам проведенной оценки наличия или отсутствия резервирования между источниками (возможности поставки тепловой энергии от разных источников) установлено, что ввиду отдаленного расположения источников относительно друг

друга, а также ввиду различных собственников источников и тепловых сетей от них, организация совместной работы нескольких источников на единую сеть не предусмотрена. На перспективу, согласно рассмотренным сценариям, по ряду источников предусматривается объединение зон действия источников со строительством нового (взамен существующих котельных) и объединением тепловых сетей от них.

Совместная работа существующих источников тепловой энергии в единую тепловую сеть не требуется.

11.1.3 Резервирование тепловых сетей смежных районов

В качестве мероприятий по резервированию в настоящей схеме теплоснабжения предлагается мероприятие по проектированию и строительству 4 вывода Архангельской ТЭЦ – участков магистральной тепловой сети от источника до ПНС-2.

Протяженность трубопровода составит 4 800 м (в довухтрубном исчислении), условный проход — 1000 мм. Реализация мероприятий обеспечит достижение следующих положительных эффектов:

- увеличение пропускной способности тепловой сети от Архнагельской ТЭЦ;
- повышение гидравлической устойчивости работы водяных тепловых сетей;
- обеспечение возможности проведения ремонтных работ с заменой участков трубопроводов на 1 и 2 выводах Архангельской ТЭЦ;
- подключение перспективных потребителей, расположенных в округах
 Майская Горка и Варавино-Фактория.

Данное мероприятие представлено в Главе 8.

11.1.4 Устройство резервных насосных станций

Установка резервных насосных станций не требуется.

11.1.5 Установка баков-аккумуляторов

Повышению надежности функционирования систем теплоснабжения в определенной мере способствует применение теплогидоракумулирующих установок, наличие которых позволяет оптимизировать тепловые и гидравлические режимы тепловых сетей, а также использовать аккумулирующие свойства отапливаемых

Теплоинерционные свойства зданий учитываются МДС 41-6.2000 зданий. «Организационно-методические рекомендации ПО подготовке проведению К отопительного периода И повышению надежности систем коммунального теплоснабжения в городах и населенных пунктах РФ» при определении расчетных расходов на горячее водоснабжение при проектировании систем теплоснабжения из условий темпов остывания зданий при авариях.

Размещение баков-аккумуляторов горячей воды возможно, как на источнике теплоты, так и в районах теплопотребления. При этом на источнике теплоты предусматриваются баки-аккумуляторы вместимостью не менее 25 % общей расчетной вместимости системы. Внутренняя поверхность баков защищается от коррозии, а вода в них - от аэрации, при этом предусматривается непрерывное обновление воды в баках.

Для открытых систем теплоснабжения, а также при отдельных тепловых сетях на горячее водоснабжение предусматриваются баки-аккумуляторы химически обработанной и деаэрированной подпиточной воды расчетной вместимостью, равной десятикратной величине среднечасового расхода воды на горячее водоснабжение.

Число баков независимо от системы теплоснабжения принимается не менее двух по 50 % рабочего объема.

В системах центрального теплоснабжения (СЦТ) с теплопроводами любой протяженности от источника теплоты до районов теплопотребления допускается использование теплопроводов в качестве аккумулирующих емкостей.

Таким образом, структура систем теплоснабжения должна соответствовать их масштабности и сложности. Если надежность небольших систем обеспечивается при радиальных схемах тепловых сетей, не имеющих резервирования и узлов управления, то тепловые сети крупных систем теплоснабжения должны быть резервированными, а в местах сопряжения резервируемой и нерезервируемой частей тепловых сетей должны иметь автоматизированные узлы управления. Это позволяет преодолеть противоречие между "ненадежной" структурой тепловых сетей и требованиями к их надежности и обеспечить управляемость системы в нормальных, аварийных и послеаварийных режимах, а также подачу потребителям необходимых количеств тепловой энергии во время аварийных ситуаций.

В перспективе, установка аккумуляторных баков на источниках города не требуется.